PUMA:
The Next
Generation
Intensity
Mapping
Experiment

Anže Slosar BNL

- Transformational radio telescope
- Characterized by having thousands of dishes closed together (**Packed**): static, transit array
- Employing latest in RF technology advances driven by telecom industry (**Ultra wide-band**) radio array
- Geared towards intensity Mapping
- Harnesses the digital signal processing at all levels, hence an interferometer (Array)
- The point of this talk:
 - This is the future
 - You should think about it!

21cm emission

- Hyperfine transition in neutral hydrogen at v=1420MHz, $\lambda=21.1$ cm;
- This is the only transition around -- if you see a line at 710MHz, it is a z=1 galaxy;
- (not true in optical)
- Universe is mostly hydrogen (75%), but at low redshift we are sensitive to pockets of neutral hydrogen in galaxies;
- 21cm surveys are galaxy surveys in radio frequencies

Dark Ages

 $20 \le z \le 150$

- Pristine primordial density field
- Still linear universe
- Like CMB in 3D: amazing science
- Observationally extremelly difficult
- 30 years from now

Epoch of Reionization

6 ≤ z ≤ 20

- First stars and galaxies are reionizing universe
- Large bubbles of ionized gas among neutral medium
- Signal driven by astrophysics
- Non-DOE science

Low redshift

z ≤ 6

- Universe is reionized
- pockets of neutral hydrogen in galaxies
- Very similar science to standard galaxy surveys
- We don't aim to go after individual galaxies

Galaxies in 21cm

This is a weak transition, 21-cm detection redshift record is z=0.376 using 178 hours of VLA data (Fernández et al, 2016)

21cm Intensity mapping

The main idea is to give up on resolving individual galaxies:

- For scales much bigger than individual galaxies, the overall signal will still trace the underlying number density of galaxies
- Put SNR where you really need it -- linear large scale modes
- Sounds easy, no?

Easy peasy, build a radio telescope

- There foregrounds that are orders of magnitude brighter than the signal
- Luckily they are spectrally smooth
- Need telescope with exquisite systematics control

Can this ever work?

- Optimist: "In CMB we regularly observe microK fluctuations on top of 3K monopole.
 We regularly observe polarization signals that 1000 times weaker than temperature signal."
- Pessimist: "Analogy with CMB is fallacious: we are differencing in frequency not space."
- Realist: "Doable, but requirest care."

But 21cm is not the only radio signal...

- Signal is subdominant, but the only non-smooth component.
- Of course, instrument can have non-smooth, time-varying response too!

What kind of instrument do you need?

VLA

- Traditional radio telescopes are interferometers
- Dish size determines field of view
- Longest baseline determines resolution
- For intensity mapping one typically wants:
 - compact array
 - favor number of baselines over ability to track
- Traditional radio telescopes do not cut it
- (SKA does not cut it)

CHIMF

Curren Status of the field

- The intensity mapping signal in 21cm has been detected in cross-correlation using single-dish experiments.
- Pioneering work Tzu-Ching Chiang in late 2000s
- Similar work has been repeated in many iterations with various instruments
- Still no published results in either:
 - Auto-correlation
 - Using interferometers

Tzu-Ching Chiang et al, 2010 (GBT x Deep-2)

Lee et al, 2020 (Parkes x Wiggle-Z)

Current status of experiment worldwide

Outside DOE:

- CHIME Canadian experiment, starting first light with full array – should detect BAO z=0.75-2
- HIRAX South African experiment, seed funded and being prototyped
- FIRST: 500m single dish Chinese experiment
- BINGO, partly funded Brazillian experiment

Inside DOE:

- Tianlai involvement at Fermilab
- BMX testbed at BNL

All these experiments will, in the next 5 years, demonstrate the promise of the technique.

CHIME telescope in Canada

BMX testbed at BNL

Step 1: WhitePaper on why this is a good idea

- Published in Fall 2018, https://arxiv.org/abs/1810.09572
- Made some basic calculations and forecasts about the promises of the project and potential difficulties

Cosmic Visions Dark Energy: Inflation and Early Dark Energy with a Stage II Hydrogen Intensity Mapping Experiment

(Cosmic Visions 21 cm Collaboration)

Réza Ansari,¹ Evan J. Arena,^{2,3} Kevin Bandura,^{4,5} Philip Bull,^{6,7} Emanuele Castorina,⁸ Tzu-Ching Chang,^{9,10} Shi-Fan Chen,⁸ Liam Connor,¹¹ Simon Foreman,¹² Josef Frisch,¹³ Daniel Green,¹⁴ Matthew C. Johnson,^{15,16} Dionysios Karagiannis,¹⁷ Adrian Liu,^{6,7,18} Kiyoshi W. Masui,¹⁹ P. Daniel Meerburg,^{20,21,22,23,24} Moritz Münchmeyer,¹⁶ Laura B. Newburgh,²⁵ Andrej Obuljen,^{26,27,28} Paul O'Connor,² Hamsa Padmanabhan,¹² J. Richard Shaw,²⁹ Chris Sheehy,² Anže Slosar,^{2,*} Kendrick Smith,¹⁶ Paul Stankus,³⁰ Albert Stebbins,³¹ Peter Timbie,³² Francisco Villaescusa-Navarro,³³ Benjamin Wallisch,^{14,34} and Martin White⁶

¹LAL, Université Paris-Sud, 91898 Orsay Cedex, France & CNRS/IN2P3, 91405 Orsay, France ²Brookhaven National Laboratory, Upton, NY 11973, USA

Step 2: Decadal Survey submission

Packed Ultra-wideband Mapping Array (PUMA): A Radio Telescope for Cosmology and Transients

Thematic Areas: Ground Based Project

Primary Contact: Name: Anže Slosar

Institution: Brookhaven National Laboratory

Email: anze@bnl.gov Phone: 631-344-8012

Contributors and Endorsers: Zeeshan Ahmed¹, David Alonso², Mustafa A. Amin³, Evan J. Arena^{4,5}, Kevin Bandura^{6,7}, Nicholas Battaglia⁸, Jonathan Blazek⁹, Philip Bull^{10,11}, Emanuele Castorina¹², Tzu-Ching Chang¹³, Liam Connor¹⁴, Romeel Davé¹⁵, Cora Dvorkin¹⁶, Alexander van Engelen^{17,18}, Simone Ferraro¹⁹, Raphael Flauger²⁰, Simon Foreman¹⁷, Josef Frisch¹, Daniel Green²⁰, Gilbert

- July 2019
- Now with a name and a logo
- Full parametric costing
- Refined concept with Petite and Full arrays
- More realistic forecasts

Step 3: Decadal Request for information P

Packed Ultra-wideband Mapping Array (PUMA*): A Radio Telescope for Cosmology and Transients

Emanuele Castorina^{1,2}, Simon Foreman³, Adrian Liu⁴, Kiyoshi W. Masui⁵, P. Daniel Meerburg⁶, Laura B. Newburgh⁷, Paul O'Connor⁸, Andrej Obuljen⁹, Hamsa Padmanabhan¹⁰, J. Richard Shaw¹¹, Anže Slosar⁸, Paul Stankus⁸, Peter T. Timbie¹², Benjamin Wallisch^{13,14}, Martin White^{2,15,16}

RFI2: Submitted for consideration by the Astro2020 Decadal Survey Program Panel Panel on Radio, Millimeter, and Submillimeter Observations from the Ground (RMS)

Distribution of elements in PUMA array showing a subset of 1296 elements. Elements are distributed on hexagonal lattice with 50% occupancy rate. Clusters of 6 elements that could share the same base station with synchronized clock and a channelizer are painted in the same color.

- Decadal Committee sent us a set of questions
- We responded in a third document (without page limit), Dec 2019
- Followed up by zoom telecon with the committee
- Wrt to the APC submission, it forced us to think the R&D phase through
- Petite and Full array became PUMA-5K and PUMA-32K
- A much better thought out R&D plan:
 - Lab work
 - Computer sims
 - PUMA prototypes: PUPs

- ¹ Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
- ² Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- ³ Perimeter Institute, Waterloo, ON N2L 2Y5, Canada
- ⁴ McGill University, Montreal, OC H3A 2T8, Canada
- ⁵ Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- ⁶ Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 , lands
- Department of Physics, Yale University, New Haven, CT 06520, USA
- ⁸ Brookhaven National Laboratory, Upton, NY 11973, USA
- ⁹ Centre for Astrophysics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- ¹⁰ Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M.
- ¹¹ University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- ¹² Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
- ¹³ Institute for Advanced Study, Princeton, NJ 08540, USA
- ¹⁴ University of California San Diego, La Jolla, CA 92093, USA
- ¹⁵ Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, US/
- 16 Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Main take-home messages

Science:

- Go after as much volume as possible
- Expansion history / growth across cosmic volume
- Inflation using primordial non-Gaussianity and search for features
- Non-DOE science:
 - Fast Radio Bursts
 - Pulsar timing

Technology:

- Development of ultra-wideband feeds allow a single instrument to reach 0.3<z<6
- Development of RF technology for telecom industry DSP
- Development of power-efficient computing enables large-scale "software telescope"

Programatics:

- It's hard -- need DOE
 HEP style collaboration
 to do it
- Requires lots of compute resources --DOE knows how to do this efficiently
- It's requires
 management: thousands
 of identical elements
 that require industrial
 scale production and
 project management

Why high redshift: volume and linear modes

The Universe at z=3

The Universe at z=5

	LSST		PUMA	LSST + DESI	CMB-S4	All experiments
Parameter	+ DESI	CMB S4	+ Planck	+ PUMA	+ PUMA	combined
	+ Planck			+ Planck		
$\sum m_{V}$ [meV]	38	59	31 / 27	25 / 22	24 / 21	15 / 14
$\sum m_{\nu} + \tau$ prior		15			14 / 13	10.4 / 10.2
$\sum m_V$ (free w)	50		33 / 29	26 / 23		_
$N_{ m eff}$	0.050	0.026	0.043 / 0.037	0.033 / 0.030	0.014 / 0.013	0.012 / 0.011
$w ext{ (free } \sum m_{V})$	0.017	_	0.006 / 0.005	0.005 / 0.004		_

From Science to Instrument Design

- Our Science naturally sets the basic instrument parameters:
 - start with a compact array that need to be big enough
 - need sufficient sensitivity proportional to NxD
 - Dishes need to be small enough for short baselines and big enough for systematics control

Result:

- 6m elements that can move N-S
- Hexagonally closely-packed with 50% fill factor
- Small version: 5000 dishes (~600m), large version 32000 dishes (~1600m)
- Massive bandwith: 200-1100 MHz (z = 6-0.3)
- Requires significant advances in instrumentation and systematics control:
 - Exquisite sub-ps clock distribution across km
 - On-dish digitization and channelization
 - FFT-correlation and real-time calibration
 - Extremely good dish stability and repeatability

Science Objective	Scientific Measurement Requirement	Measurement Objective	Instrument Requirements	
A. Characterize expansion history in the pre-acceleration era Decadal Science Whitepaper: [11]	Measure Baryon Acoustic Oscillations to volume-limited accuracy	Measure 21 cm intensity: - over $2 < z < 6$ - to $k \sim 0.4h\text{Mpc}^{-1}$ - with SNR per mode ~ 1 at $k \sim 0.2h$ Mpc ⁻¹	Bandwidth must include 200-475 MHz packed ultrown Maximum baseline $L_{\rm max} \gtrsim 600 {\rm m}$ ND $> 25 {\rm km}$ at $L_{\rm max} = 600 {\rm m}^+$	
B. Characterize structure growth in the pre-acceleration era Decadal Science Whitepaper: [11]	Measure growth through the 21 cm power spectrum on weakly non-linear scales to volume-limited accuracy	Measure 21 cm intensity: - over $2 < z < 6$ - to $k \sim 1.0 h \text{Mpc}^{-1}$ - with SNR per mode ~ 1 at $k \sim 0.6 h \text{Mpc}^{-1}$	Bandwidth must include 200-475 MHz Maximum baseline $L_{\text{max}} \gtrsim 1500 \text{ m}$ $ND > 200 \text{ km}$ at $L_{\text{max}} = 1500 \text{ m}^*$	
C. Constrain or detect primordial non-Gaussianity Decadal Science Whitepaper: [13]	Measure the 21 cm bispectrum to achieve non-Gaussianity sensitivity of: orthogonal: $\sigma \begin{bmatrix} \text{Northo} \\ \text{NL} \end{bmatrix} < 10$ equiliateral: $\sigma \begin{bmatrix} \text{Squil} \\ \text{NL} \end{bmatrix} < 10$	Measure $\gtrsim 10^9$ linear modes with SNR per mode ~ 1	Same as above plus: bandwidth 200 – 1100 MHz ($z \sim 0.3 - 6$) assuming $f_{\rm sky} \sim 0.5$	
D. Constrain or detect features in the primordial power spectrum Decadal Science Whitepaper: [14]	Measure the matter power spectrum over all available scales to constrain primordial features with: $-A_{\rm lin} < 1 \times 10^{-3} \ (95\% \ {\rm c.l.})$	Sufficient forecasted power spectrum sensitivity	Same as above	
E. Fast Radio Burst Tomography Decadal Science Whitepapers: [16, 19–21]	Volume limited measurement of electron power spectrum, stellar mass census	1 million FRBs - covering two frequency octaves - 3" localization precision	Fluence sensitivity threshold $\lesssim 2.5 f_{\rm sky}^{2/3}$ Jy ms Provide real-time FRB back-end Provide baseband buffer with triggered readout	
F. Monitor pulsars Decadal Science Whitepapers: [21–26]	Monitor all pulsars discovered by SKA	Detect all pulsars in current Field of View brighter than 10 µ Jy	10 σ point source sensitivity > 10μJy/transit Provide real-time pulsar back-end	

Table 1: Science traceability matrix for main science drivers. All derived instrument parameters assume certain fixed system properties such as amplifier temperature, sky background and various efficiency factors as outlined in [3]. The total integration time is assumed to be five years. *At fixed linear dimension of the array, the noise power scales as ND, where N is the number of elements and D is their linear dimension. FRB rates and properties at frequencies below $400 \, \text{MHz}$ are extrapolations.

Antenna Array	Hexagonal close-packed transit array			Survey	
	Petite	Full	Petite array: Achieve science goals A & F,	area	50% sky
array diameter	600m	1500m	and $\sim 30\%$ of B to E	observing time	5 years on sky, wall-time 7-10 years
fill factor	50%	50%	Full array: Achieve all science goals	equivalent source density	10010 - 1010
number of elements	5,000	32,000		at $z = 2$, $k = 0.2h \mathrm{Mpc^{-1}}$	$7.4/2.0 \times 10^{-3} h^3 \text{Mpc}^{-3}$ (full/petite)
10σ single transit sens.	8.7μJy	1.3μJy		total equivalent sources	
Array element	Parabolic on-axis with N-S pointing		transit observations, campaign repointing	at $k = 0.2 h \text{Mpc}^{-1}$	2.9/0.6 billion (full/petite)
dish diameter	6m		shortest possible baselines with $D \gg \lambda_{min}$	at $k = 0.5 h \text{Mpc}^{-1}$	2.5/0.4 billion (full/petite)
construction	on-site fiber-glass production, mm surface accuracy		better beam control than Stage I for systematics	FRB rates (expected)	100 Miles (100 - 100 miles (100 m
frequency coverage	200 - 1100 MHz			200-400 MHz	1200/70 per day (full/petite; uncertain)
OMT	ultra-wide band, dual-pol amplifiers and digitizers integrated with OMT			400-700 MHz	1000/60 per day (full/petite)
front-end			alternative arrangement to be explored	700-1100 MHz	1300/80 per day (full/petite)
channelizer	one per 10-100 dishes		helps with corner-turning, alternatives possible	Calibration	
Correlator	FFT correlator with partial N ² correlations real-time FRB search engine		also non-FFT calibration mode	complex amplitude	sky sources
FRB capability			TO DESCRIPTION THAT TO STATE OF THE STATE OF	primary beam	per antenna using fixed wing drones
real-time beamforming	104 concurrent tracking	beams	pulsar, transients, multi-messenger	clock distribution	100 fs clock distribution for phase stability

Table 2: Basic instrumental parameters.

Field reconstructions

- Non-linear evolution cascades information from large-scales to smaller scales
- Can use weakly non-linear scales to reconver linear fields:
 - Recovers modes lost to foregrounds
 - Lowers noise below Poisson noise
- Method developed for galaxies, but 21cm is an ideal application (light halos, high redshift)

From Chirag, White, Slosar, Castorina, JCAP 2019

Field reconstructions

- Non-linear evolution cascades information from large-scales to smaller scales
- Can use weakly non-linear scales to reconver linear fields:
 - Recovers modes lost to foregrounds
 - Lowers noise below Poisson noise
- Method developed for galaxies, but 21cm is an ideal application (light halos, high redshift)

From Chirag, White, Slosar, Castorina, JCAP 2019

Enabling Technologies

- Development of ultra-wide band feeds
 - price is ~10% coupling loss across the band
 - 6:1 frequency ratios achiveable
- Commercial fast digitizers:
 - 5 GS/s rate is becoming feasible
 - Cheaper to oversample than to make analog filtes
 - Integrated OMT/digitizer/channelizer possible
- Networking and Correlation:
 - o Off-the-shelf digital network:
 - CHIME built an effectively proprietary
 FGPA based network
 - You can now use off-the-shelf 10Gb ethernet / switches
 - GPU / ASIC correlations using FFT

Xilinx ZCU111 RFSoC FPGA digitizer/channelizer

The Four prongs of the R&D Plan

1. Technology Development in the Lab	2. Computing, Software, Pipelines	Real-time signal processing and Calibration	4. Path-finder arrays
 Optical and Mechanical Antenna Design Dish Construction Techniques (fiberglass moulding alla CHORD or something else?) Integrated Analog and Digitalf ront-end Clock distribution (White Rabbit likely just not quite good enough) Primary Beam Calibration (drones) 	 Electromagnetic modelling of Array performance (from single-dishes to coupling between dishes) Time-stream simulations (can rely on existing experiments) Proto-pipelines to validate the algorithms 	 PUMA relies on FFT correlation A separate calibration correlator will run in parallel Requirements on the calibration correlator unknow, although some publishes result on possible algorithrms (Gorthi et al 2020) Demonstration of this subsystem in computer simulations 	 PUP engineering prototypes Ranging from PUP-2 to PUP-60 A well-defined research goal for each stage Likely and iterative plan that will change as we learn more

CPAD / BRN Process

- 21cm technology is now part of the process
- Two topics where our needs are represented:
 - "Breaking the picosecond barrier"
 - "Real-time data processing"
- There is some hope for R&D funding, but science needs to lead.

PUMA Collaboration today

- We have around 40 people on the e-mail exploder
- Monthly seminar series that has been very successful
- Aug 18-20:
 - Inaugural Virtual Workshop
 - A great success, over 30 people online
- Next steps:
 - Start real work towards setting the requirements
 - Entire system relies around dividing and controlling the complex gain and beam stability allowance across various subsystems and real-time calibration that keeps it there
 - The dish synchronization requirements are still not absolutely clear, likely around 100fs
 - A lot of headway can be made using relatively simple numerical experiments
- We hope to have a Snowmass WhitePaper which will be an update to Decadal RFI response with hand-wavy bits replaced by real numbers

Conclusions

- 21cm intensity mapping is potentially a revolutionary technique
- It allows:
 - Mapping universe across cosmic times with a single instrument
 - Unprecedented signal to noise at affordable cost
 - Riding the wave of technology development for the telecom and computing market
- Nobody has quite managed to make it work:
 - Problems purely technical in nature
 - Our community is capable of solving them
- Let's do it!

BACKUP SLIDES

Main difference with galaxy surveys

- We definitely loose the low $k_{||}$ modes $(k_{||} \le 10^{-2} \, \text{Mpc}^{-1})$ directly
- Low k_{||} modes could be reconstructed using several techniques
- We potentially loose modes inside the wedge, but could get them back with good calibration
- Additionally, we do not know the mean signal, hence redshift-space distortions need additional calibration